SIRT1 inhibition impairs non-homologous end joining DNA damage repair by increasing Ku70 acetylation in chronic myeloid leukemia cells
نویسندگان
چکیده
Most chemotherapeutic agents for leukemia are DNA damaging agents. However, DNA lesions can be repaired by activities of DNA repair systems. Increasing evidence have shown that enhanced DNA damage repair capacity contributes to chemotherapy resistance in leukemia cells. Thus, targeting DNA repair mechanisms is a promising strategy for novel leukemia treatment. SIRT1 expressions were downregulated by lentivirus-delivered SIRT1 shRNA in myeloid leukemia cells. SIRT1 mRNA and protein levels were analyzed by real-time PCR and Western blot, respectively. Flow cytometry was carried out to analyze cell cycle progression, apoptosis and DNA damage repair efficiency. DNA damage levels were assessed by alkaline comet assay, and H2AX phosphorylation was analyzed by immunoblotting and immunofluorescence. A mouse leukemia model was established by transplanting lentivirus-infected K562 cells containing SIRT1 shRNA into sublethally irradiated NOD/SCID mice, and tumorigenesis was evaluated by detecting tumor weights and mice survival. SIRT1 expressions were upregulated in myeloid leukemic patients. Downregulation of SIRT1 by RNAi promoted etoposide-induced DNA damage in myeloid leukemia cells accompanied by reduced NHEJ activity, and increased Ku70 acetylation. Furthermore, SIRT1 knockdown resulted in cell cycle arrest, induction of apoptosis and reduction of K562 cell proliferation accompanied by enhanced p53 and FOXO1 acetylation in K562 cells after etoposide treatment. Importantly, SIRT1 downregulation reduced the tumorigenesis ability of K562 cells in mouse xenografts following chemotherapy treatment. These results revealed that SIRT1 promotes the NHEJ repair pathway by deacetylating Ku70 in K562 cells, suggesting that SIRT1 is a novel therapeutic target for treating myeloid leukemia.
منابع مشابه
SIRT1 downregulation enhances chemosensitivity and survival of adult T-cell leukemia-lymphoma cells by reducing DNA double-strand repair.
Most chemotherapy drugs used for the treatment of adult T-cell leukemia-lymphoma (ATL) cause cell death directly by inducing DNA damage, which can be repaired via several DNA repair pathways. Enhanced activity of DNA damage repair systems contributes to ATL resistance to chemotherapies. Targeting DNA repair pathways is a promising strategy for the sensitization of ATL cells to chemotherapeutic ...
متن کاملSIRT1 and LSD1 competitively regulate KU70 functions in DNA repair and mutation acquisition in cancer cells
Acquisition of BCR-ABL mutations underlies drug resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors, but the molecular mechanisms of mutation acquisition are poorly understood. We previously showed that lysine deacetylase sirtuin 1, SIRT1, promotes acquisition of BCR-ABL mutations in association with enhancing KU70 mediated non-homologous end joining DNA repair. In this s...
متن کاملNonhomologous End-Joining Proteins Is Associated with DNA Damage at Sites that Recruit Key Increased Error-prone NHEJ Activity in Myeloid Leukemias
Double strand breaks (DSBs) are considered the most lethal form of DNA damage for eukaryotic cells, and misrepair of DSB can cause cell death, chromosome instability, and cancer. Nonhomologous end-joining (NHEJ) is a major mechanism for the repair of DSBs. We previously reported that the cancer predisposition Bloom’s syndrome and myeloid leukemias demonstrate increased NHEJ activity and consequ...
متن کاملA new phosphorylated form of Ku70 identified in resistant leukemic cells confers fast but unfaithful dna repair in cancer cell lines
Ku70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA dam...
متن کاملHeat shock factor 1, an inhibitor of non-homologous end joining repair
A novel role for HSF1 as an inhibitor of non-homologous end joining (NHEJ) repair activity was identified. HSF1 interacted directly with both of the N-terminal sequences of the Ku70 and Ku86 proteins, which inhibited the endogenous heterodimeric interaction between Ku70 and Ku86. The blocking of the Ku70 and Ku86 interaction by HSF1 induced defective NHEJ repair activity and ultimately activate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016